389 research outputs found

    Information entropic superconducting microcooler

    Get PDF
    We consider a design for a cyclic microrefrigerator using a superconducting flux qubit. Adiabatic modulation of the flux combined with thermalization can be used to transfer energy from a lower temperature normal metal thin film resistor to another one at higher temperature. The frequency selectivity of photonic heat conduction is achieved by including the hot resistor as part of a high frequency LC resonator and the cold one as part of a low-frequency oscillator while keeping both circuits in the underdamped regime. We discuss the performance of the device in an experimentally realistic setting. This device illustrates the complementarity of information and thermodynamic entropy as the erasure of the quantum bit directly relates to the cooling of the resistor.Comment: 4 pages, 3 figure

    Dephasing of qubits by transverse low-frequency noise

    Full text link
    We analyze the dissipative dynamics of a two-level quantum system subject to low-frequency, e.g. 1/f noise, motivated by recent experiments with superconducting quantum circuits. We show that the effect of transverse linear coupling of the system to low-frequency noise is equivalent to that of quadratic longitudinal coupling. We further find the decay law of quantum coherent oscillations under the influence of both low- and high-frequency fluctuations, in particular, for the case of comparable rates of relaxation and pure dephasing

    Minimum construction of two-qubit quantum operations

    Full text link
    Optimal construction of quantum operations is a fundamental problem in the realization of quantum computation. We here introduce a newly discovered quantum gate, B, that can implement any arbitrary two-qubit quantum operation with minimal number of both two- and single-qubit gates. We show this by giving an analytic circuit that implements a generic nonlocal two-qubit operation from just two applications of the B gate. We also demonstrate that for the highly scalable Josephson junction charge qubits, the B gate is also more easily and quickly generated than the CNOT gate for physically feasible parameters.Comment: 4 page

    Relaxation of Josephson qubits due to strong coupling to two-level systems

    Get PDF
    We investigate the energy relaxation (T1) process of a qubit coupled to a bath of dissipative two-level fluctuators (TLF). We consider the fluctuators strongly coupled to the qubit both in the limit of spectrally separated single TLF's as well as in the limit of spectrally dense TLF's. We conclude that the avoided level crossings, usually attributed to very strongly coupled single TLF's, could also be caused by many weakly coupled spectrally dense fluctuators.Comment: 11+ pages, 10 figures, citations added, discussion extende

    Non-adiabatically detecting the geometric phase of the macroscopic quantum state with symmetric SQUID

    Full text link
    We give a simple way to detect the geometric phase shift and the conditional geometric phase shift with Josephson junction system. Comparing with the previous work(Falcl G, Fazio R, Palma G.M., Siewert J and Verdal V, {\it Nature} {\bf 407}, 355(2000)), our scheme has two advantages. We use the non-adiabatic operation, thus the detection is less affected by the decoherence. Also, we take the time evolution on zero dynamic phase loop, we need not take any extra operation to cancel the dynamic phase.Comment: 8 pages, 4 figure

    Topological surface states in three-dimensional magnetic insulators

    Full text link
    An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these "Hopf insulators" are characterized by a topological invariant as in quantum Hall states and Z_2 topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the 3-sphere to the 2-sphere. This paper gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model.Comment: 4 pages, 2 figures; published versio

    Statistics and noise in a quantum measurement process

    Full text link
    The quantum measurement process by a single-electron transistor or a quantum point contact coupled to a quantum bit is studied. We find a unified description of the statistics of the monitored quantity, the current, in the regime of strong measurement and expect this description to apply for a wide class of quantum measurements. We derive the probability distributions for the current and charge in different stages of the process. In the parameter regime of the strong measurement the current develops a telegraph-noise behavior which can be detected in the noise spectrum.Comment: 4 pages, 2 figure

    Quantum logic operations and creation of entanglement in a scalable superconducting quantum computer with long-range constant interaction between qubits

    Full text link
    We consider a one-dimensional chain of many superconducting quantum interference devices (SQUIDs), serving as charge qubits. Each SQUID is coupled to its nearest neighbors through constant capacitances. We study the quantum logic operations and implementation of entanglement in this system. Arrays with two and three qubits are considered in detail. We show that the creation of entanglement with an arbitrary number of qubits can be implemented, without systematic errors, even when the coupling between qubits is not small. A relatively large coupling constant allows one to increase the clock speed of the quantum computer. We analytically and numerically demonstrate the creation of the entanglement for this case, which can be a good test for the experimental implementation of a relatively simple quantum protocol with many qubits. We discuss a possible application of our approach for implementing universal quantum logic for more complex algorithms by decreasing the coupling constant and, correspondingly, decreasing the clock speed. The errors introduced by the long-range interaction for the universal logic gates are estimated analytically and calculated numerically. Our results can be useful for experimental implementation of quantum algorithms using controlled magnetic fluxes and gate voltages applied to the SQUIDs. The algorithms discussed in this paper can be implemented using already existing technologies in superconducting systems with constant inter-qubit coupling.Comment: 24 page

    Full Frequency Back-Action Spectrum of a Single Electron Transistor during Qubit read-out

    Full text link
    We calculate the spectral density of voltage fluctuations in a Single Electron Transistor (SET), biased to operate in a transport mode where tunneling events are correlated due to Coulomb interaction. The whole spectrum from low frequency shot noise to quantum noise at frequencies comparable to the SET charging energy (EC/â„Ź)(E_{C}/\hbar) is considered. We discuss the back-action during read-out of a charge qubit and conclude that single-shot read-out is possible using the Radio-Frequency SET.Comment: 4 pages, 5 figures, submitted to PR

    Optimal quantum circuit synthesis from Controlled-U gates

    Full text link
    From a geometric approach, we derive the minimum number of applications needed for an arbitrary Controlled-Unitary gate to construct a universal quantum circuit. A new analytic construction procedure is presented and shown to be either optimal or close to optimal. This result can be extended to improve the efficiency of universal quantum circuit construction from any entangling gate. Specifically, for both the Controlled-NOT and Double-CNOT gates, we develop simple analytic ways to construct universal quantum circuits with three applications, which is the least possible.Comment: 4 pages, 3 figure
    • …
    corecore